{ privilege }

  • Why Are There More Women in CS in Other Cultures?

    The rates of female participation in CS – and STEM in general – vary wildly from culture to culture. In the US, women currently make up about 18% of undergraduate CS students [1], but over in Qatar, women make up about 70% of CS undergrads [2].

    Women in STEM are better represented in countries such as Turkey, Hungary, Portugal, and the Philippines. In these countries, women make up approximately 50% of STEM undergrads [3]. Indeed, well-developed countries like Canada, the US, and the UK have some of the lowest levels of female participation in STEM.

    So, what cultural factors lead to fewer or more women in STEM? Per the work of Barinaga, there are five factors [3]:

    1. Recently developed science capabilities, resulting in an unentrenched scientific community
    2. Perception of science as a low status career
    3. Class issues that overshadow gender issues
    4. Compulsory math and science education in secondary school
    5. Large social support for raising families

    New to Science

    While it’s a bit surprising that Portugal and Mexico have better levels of female participation in science despite these countries not having well established scientific scenes, the evidence is actually that they have these better levels because of the newness of their scientific communities [3]. In countries like the US and the UK, the scientific communties have entrenched cultures. So called “old boys networks” were built up before women were allowed into the labour market; science has been firmly established as a masculine occupation. Portugal, for instance, begin its scientific and technological establishments in the 20th century, when society was more open to female participation.

    It should be noted, however, that while countries like Portugal may have large numbers of women in science, few are making it to the top. Beatriz Ruivo, who studies female participation in Portugese science, has found that the
    glass ceiling there is partly due to the lack of a strong women’s movement in Portugal [3]. We see an interesting parallel in the history of computer science. In the early days of computer programming (30s-60s), most programmers and coders were women [4]. It was later when stereotypes of programmers being nerds developed – and IT companies began specifically hiring those who were like the nerds in order to make up for a labour shortage in the late 60s – that programming became highly masuclinized.

    Science As a Low-Status Occupation

    It is fairly established in the sociology literature that, across cultures, the lower the status and pay an occupation, the more likely it is that women will be found there [3]. And not only are women more socially encouraged to stay in low-status occupations, but some occupations are reinforced as having low status due to the large numbers of women – forming “occupational ghettos”.

    This was certainly the case in the early history of computer programming. Women were traditionally “computers” – those that did the hand computations, whereas men actually did the science [5]. When computers entered the mix,
    it was the men who were to decide what the computers should calculate, and women were left as the low status “coders” to carry out the low-level work [4].

    For countries with recently developed science communities, basic science is not highly connected to the production of goods and services. Science is hence seen only as an intellectual, cultural pursuit – not unlike how the humanities are regarded in the US and Canada. The humanities in North America are frequently (and unfortunately) derided as being “useless” – and have largely equal levels of women and men in modern day.

    In computer science, it has been noted that male students often select careers in CS for the money. As computer science has become known as a lucrative field, more men have been specifically drawn to the field – and driving out their female colleagues.

    A Matter of Privilege

    In India, southern Europe, and Latin America, the social hierarchy puts high class women above low class men [3]. In these countries, education is often limited to the upper classes, resulting in a very different environment in academia than in the general population.

    In North America, women from affluent communities, with parents in IT, were more likely to go into computer science themselves [6]. In short, the more privilege you have, the more likely you are to study CS – for instance, a White woman from a rich family and urban neighbourhood is more likely to have a job in STEM than than an Aboriginal man from a poor, rural family.

    For computer science, the digital divide plays in to class issues [6]. The low classes not only are less likely to receive higher education, but also less likely to be connected to modern computing. Without a connection to computers, one would expect fewer of them to study computer science.

    Compulsory Schooling – And Mindset

    Former Soviet countries have higher rates of female participation in science, and Barinaga attributes this partly to the requirement that all secondary school students take multiple science courses and mathematics [3]. As a result, girls “can’t ‘chicken out’” of science and don’t close doors on themselves before they reach university’’. The policy of teaching all science subjects, in particular, is beneficial – when students can choose one science out of a list (as is the case in many Canadian provinces), female participation in physics is reduced.

    The American approach of science being optional – and hence avoided by all but the gifted students – leads to a mentality to that you either have talent in science, or you don’t [3]. This fixed mindset approach to science has been consistently found detrimental both to individual success in science, as well as for minorities. In countries like Italy, where all sciences are mandatory, the communal mindset about science is a growth mindset: anybody can do it.

    Support For Families

    Forty percent of women who leave the workforce cite their husbands – and specifically, their husbands’ inability to pull their weight with housework and childcare – as their reason for leaving [8]. The United States was described by Barinaga’s international participants as “just a horrible place to try to raise a family and have a career’’. Without state-mandated parental leave, allowances for dads to stay home to look after children, and daycare, it is difficult for many women to manage both career and family.

    Contributing to the problem is the Protestant work ethic for men, leading men to focus only on work and leave everything else to their wives. In northern Europe, Canada, and the US, fathers spend less time looking after their families [3]. Female science participation is higher in countries where childcare is a shared responsibility: not just between father and mother, but also with the extended family, and society at large.

    This shared responsibility needs to be present in the workplace too; as one of Barinaga’s participants described: “if I missed a half-day of work [in the United States because] my kid had a temperature of 104, I was lectured on how this let down the [department]. In Israel there is 3 months paid maternity leave, day-care centers on every block, and if you don’t take off from work for your kid’s birthday party the department chairman will lecture you on how important these things are to kids and how he never missed one while his kids were little (Emphasis added).

    A Final Note

    Culture is a complex issue. None of the issues listed here can be a panacea for North American STEM. For example, even if we made CS obligatory in high school, it’s unlikely to have an effect for many racial minorities (Black/Hispanic Americans, Aboriginal Canadians, New Zealand Maori, etc), as these groups have low rates of high school completion [7]. By identifying these cross-cultural factors that promote women in STEM, we can better identify what factors (plural!) need addressing here in North America.

    References:
    [1] NCWIT By the Numbers. http://www.ncwit.org/resources/numbers
    [2] Guzdial. Women in CS in Qatar: It’s Complicated. http://computinged.wordpress.com/2010/05/03/women-in-cs-in-qatar-its-complicated/
    [3] Barinaga. “Surprises Across the Gender Divide”. Science 263, number 5152 (1994): 1486.
    [4] Ensmenger. “The Computer Boys Take Over”.
    [5] Rossiter. “Women scientists in America: Struggles and Strategies to 1940”, volume 1.
    [6] Ashcraft, Eger and Friend. “Girls in IT: The Facts”. http://www.ncwit.org/resources/girls-it-facts
    [7] Adams, Hazzan, Loftsson, and Young. “International Perspective of Women and Computer Science”. http://dl.acm.org/citation.cfm?id=611892.611897
    [8] Stone. “Opting Out? Why Women Really Quit Careers and Head Home”. University of California Press, 2007.